Riemann Poisson Manifolds and Kähler-riemann Foliations
نویسنده
چکیده
1 Riemann Poisson manifolds were introduced by the author in [1] and studied in more details in [2]. Kähler-Riemann foliations form an interesting subset of the Riemannian foliations with remarkable properties ( see [3]). In this paper we will show that to give a regular Riemann Poisson structure on a manifold M is equivalent to to give a Kähler-Riemann foliation on M such that the leafwise symplectic form is invariant with respect to all local foliate perpendicular vector fields. We show also that the sum of the vector space of leafwise cohomology and the vector space of the basic forms is a subspace of the space of Poisson cohomology.
منابع مشابه
The Mixed Hodge–riemann Bilinear Relations for Compact Kähler Manifolds
We prove the Hodge–Riemann bilinear relations, the hard Lefschetz theorem and the Lefschetz decomposition for compact Kähler manifolds in the mixed situation.
متن کاملOn the Riemann-Lie Algebras and Riemann-Poisson Lie Groups
A Riemann-Lie algebra is a Lie algebra G such that its dual G∗ carries a Riemannian metric compatible (in the sense introduced by the author in C. R. Acad. Sci. Paris, t. 333, Série I, (2001) 763–768) with the canonical linear Poisson structure of G∗ . The notion of Riemann-Lie algebra has its origins in the study, by the author, of Riemann-Poisson manifolds (see Differential Geometry and its A...
متن کاملTwistor Spaces and Balanced Metrics on Complex Manifolds Complex manifolds of complex dimension
Complex manifolds of complex dimension 1 (Riemann surfaces) are of course always Kähler, that is admit Kähler metrics, on account of the obvious dimension situation: dω=0 simply because it is a 3-form! This dimensional necessity naturally does not apply in complex dimension 2 or higher, but as it happens, most compact complex surfaces in fact are Kähler. Moreover, the non-Kähler examples occurr...
متن کاملThe stable homotopy theory of vortices on Riemann surfaces
The purpose of these notes is to show that the methods introduced by Bauer and Furuta, see [5, 6, 7], in order to refine the Seiberg-Witten invariants of smooth 4-dimensional manifolds can also be used to obtain stable homotopy classes from 2-dimensional manifolds, using the vortex equations on the latter. So far these notes contain barely more than the necessary analytic estimates to prove thi...
متن کاملSymplectic Fibrations and the Abelian Vortex Equations
The nth symmetric product of a Riemann surface carries a natural family of Kähler forms, arising from its interpretation as a moduli space of abelian vortices. We give a new proof of a formula of Manton–Nasir [10] for the cohomology classes of these forms. Further, we show how these ideas generalise to families of Riemann surfaces. These results help to clarify a conjecture of D. Salamon [13] o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003